The size function for cyclic cubic fields

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Tame kernels of cubic cyclic fields

There are many results describing the structure of the tame kernels of algebraic number fields and relating them to the class numbers of appropriate fields. In the present paper we give some explicit results on tame kernels of cubic cyclic fields. Table 1 collects the results of computations of the structure of the tame kernel for all cubic fields with only one ramified prime p, 7 ≤ p < 5, 000....

متن کامل

The arithmetic of certain cubic function fields

In this paper, we discuss the properties of curves of the form y3 = f(x) over a given field K of characteristic different from 3. If f(x) satisfies certain properties, then the Jacobian of such a curve is isomorphic to the ideal class group of the maximal order in the corresponding function field. We seek to make this connection concrete and then use it to develop an explicit arithmetic for the...

متن کامل

The Secondary Term in the Counting Function for Cubic Fields

Work in progress, September 21, 2010. We prove asymptotic formulas for the number of cubic fields of positive or negative discriminant less than X. These formulas involve main terms of X and X multiplied by appropriate constants, with error terms of O(X ). This confirms a conjecture of Datskovsky-Wright [13] and Roberts [25]. Our results continue to hold when finitely many splitting conditions ...

متن کامل

Tabulation of cubic function fields via polynomial binary cubic forms

We present a method for tabulating all cubic function fields over Fq(t) whose discriminant D has either odd degree or even degree and the leading coefficient of −3D is a non-square in Fq , up to a given bound B on deg(D). Our method is based on a generalization of Belabas’ method for tabulating cubic number fields. The main theoretical ingredient is a generalization of a theorem of Davenport an...

متن کامل

Class number approximation in cubic function fields

A central problem in number theory and algebraic geometry is the determination of the size of the group of rational points on the Jacobian of an algebraic curve over a finite field. This question also has applications to cryptography, since cryptographic systems based on algebraic curves generally require a Jacobian of non-smooth order in order to foil certain types of attacks. There a variety ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Number Theory

سال: 2018

ISSN: 1793-0421,1793-7310

DOI: 10.1142/s1793042118500276